Depinning and creeplike motion of wetting fronts in weakly vibrated granular media.

نویسندگان

  • Alexander S Balankin
  • E García Otamendi
  • D Samayoa
  • J Patiño
  • M A Rodríguez
چکیده

We study the effect of weak vibrations on the imbibition of water in granular media. In our experiments, we have observed that as soon as the vibration is applied, an initially pinned wetting front advances in the direction of imbibition. We found that the front motion is governed by the avalanches of localized intermittent advances directed at 45° to the imbibition direction. When the rescaled gravitational acceleration of vertical vibrations is in the range of 0.81≤G≤0.95, we observed an almost steady motion of wetting front with a constant velocity v(cr)(G)∝exp(-1/G) during more than 20 min, whereas at lower accelerations (0.5≤G≤0.8) the front velocity decreases in time as v∝t(-δ). We suggest that the steady motion of an imbibition front in a weakly vibrated granular medium can be treated as a creep motion associated with nonthermal temporal fluctuations of packing density in a weakly vibrated granular medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depinning and dynamics of imbibition fronts in paper under increasing ambient humidity.

We study the effects of ambient air humidity on the dynamics of imbibition in a paper. We observed that a quick increase of ambient air humidity leads to depinning and non-Washburn motion of wetting fronts. Specifically, we found that after depinning the wetting front moves with decreasing velocity v[proportionality](h(p)/h(D))(γ), where h(D) is the front elevation with respect to its pinned po...

متن کامل

Anisotropy of weakly vibrated granular flows.

We experimentally probe the anisotropy of weakly vibrated flowing granular media. Depending on the driving parameters-flow rate and vibration strength-this anisotropy varies significantly. We show how the anisotropy collapses when plotted as a function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggest that for small anisotropies, the s...

متن کامل

Towards the Glass Transition in Vibrated Granular Matter

Granular materials are large sets of macroscopic particles that interact solely via contact forces. The static behavior depends on the contact network and on the surface friction forces between grains; when they are set in motion (typically by vibrations) their dynamics is dominated by inelastic collisions. For these reasons granular media show an extremely rich phenomenology, ranging from flui...

متن کامل

Granular Temperature under Segregation in a Vibrated Granular Bed

The dominant mechanism affecting the flow behavior of granular materials is the random motions of particles resulted from the interactive collisions between particles. The velocity fluctuations induce the segregation in granular flows. The different physical properties of granular material were used to investigate the segregation in a vibrated granular bed in this paper. The image processing te...

متن کامل

Depinning, front motion, and phase slips.

Pinning and depinning of fronts bounding spatially localized structures in the forced complex Ginzburg-Landau equation describing the 1:1 resonance is studied in one spatial dimension, focusing on regimes in which the structure grows via roll insertion instead of roll nucleation at either edge. The motion of the fronts is nonlocal but can be analyzed quantitatively near the depinning transition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012